deDetection.Rd
This function executes in a docker edgeR for the idnetification of differentially expressed genes in single-cells RNAseq
a character string. Two options: sudo or docker, depending to which group the user belongs
a character string indicating the folder where input data are located and where output will be written
a character string indicating the counts table file. IMPORTANT in the header of the file the covariate group MUST be associated to the column name using underscore, e.g. cell1_cov1
type of file: txt tab separated columns csv comma separated columns
minimal logFC present in at least one of the comparisons with respect to reference covariate
minimal FDR present in at least one of the comparisons with respect to reference covariate
minimal average abundance
TRUE if differentially expressed genes are represented in a plot.
if (FALSE) {
#running deDetection
system("wget http://130.192.119.59/public/buettner_counts_noSymb.txt.zip")
unzip("buettner_counts_noSymb.txt.zip")
lorenzFilter(group="docker", scratch.folder="/data/scratch/",
data.folder=getwd(), matrixName="buettner_counts_noSymb",
p_value=0.05, format="txt", separator='\t')
system("wget ftp://ftp.ensembl.org/pub/release-92/gtf/mus_musculus/Mus_musculus.GRCm38.92.gtf.gz")
system("gzip -d Mus_musculus.GRCm38.92.gtf.gz")
scannobyGtf(group="docker", data.folder=getwd(),
counts.table="lorenz_buettner_counts_noSymb.txt",
gtf.name="Mus_musculus.GRCm38.92.gtf",
biotype="protein_coding", mt=FALSE, ribo.proteins=FALSE,
file.type="txt", umiXgene=3)
deDetection(group="docker", data.folder=getwd(),
counts.table="annotated_lorenz_buettner_counts_noSymb.txt",
file.type="txt", logFC.threshold=1, FDR.threshold=0.05, logCPM.threshold=4, plot=TRUE)
}