wrapperClustersIntegration.Rd
This function execute toprnk analysis which search for correspondence between clusters of two different experiments requires that the data are clustered with any of the software implemented in rCASC, cometsc, bulkClusters and autoencoder4pseudoBulk were already executed.
wrapperClustersIntegration(
group = c("sudo", "docker"),
scratch.folder,
file.matrix1,
file.matrix2,
file.total1,
file.total2,
cl1,
cl2,
separator1,
separator2,
permutation = 100,
seed = 111,
top.ranked = 320,
gsea = "msigdb.all",
X = 5,
L = 0.15,
pvalue = 0.05,
outputFolder
)
a character string. Two options: sudo or docker, depending to which group the user belongs
a character string indicating the path of the scratch folder
a character string indicating the path of the first matrix
a character string indicating the path of the second matrix
a character string indicating the path to the total.csv.for the 1st dataset to be integrated. Total.csv is generated with autoencoder4pseudoBulk. File, with file name and extension included.
a character string indicating the path to the total.csv.for the 2nd dataset to be integrated. Total.csv is generated with autoencoder4pseudoBulk. File, with file name and extension included.
path of clustering.output for file.matrix1
path of clustering.output for file.matrix2
separator used in count file, e.g. '\t', ','
separator used in count file, e.g. '\t', ','
number of permutation to be run
integer file necessary for reproducibility
MAX number of top comet genes to be used for each cluster, default 320
default msigdb.all, which includes all classes. List of the available GSEA classes: c1.all, c2.cgp, c2.cp.biocarta, c2.cp.kegg, c2.cp.pid, c2.cp.reactome, c2.cp.wikipathways, c3.all, c3.mir, c3.tft.gtrd, c3.tft, c4.cgn, c4.cm, c5.go.bp, c5.go.cc, c5.go.mf, c5.hpo, c6.all, c7.all, c8.all, h.all, msigdb.all. Please note that msigdb.all includes all gsea classes.
X parameter for the XLmHG, default 5, for more info please see XLmHG help: https://xl-mhg.readthedocs.io/en/latest/.
L parameter for the XLmHG, default 0.15, for more info please see XLmHG help: https://xl-mhg.readthedocs.io/en/latest/.
XLmHG pvalue threshold,default 0.05
where results are placed
A picture called integrated_score.png and a file called integrated_score.csv and all the final_scores.csv used to produce the integrated results.
if (FALSE) {
library(rCASC)
wrapperClustersIntegration(group="docker",
scratch.folder="/scratch",
file.matrix1="/data/clusters_association_paper/setA1_set1/setA1/VandE/VandE.csv",
file.matrix2="/data/clusters_association_paper/setA1_set1/set1/VandE/VandE.csv",
cl1="/data/clusters_association_paper/setA1_set1/setA1/VandE/Results/VandE/5/VandE_clustering.output.csv",
cl2="/data/clusters_association_paper/setA1_set1/set1/VandE/Results/VandE/4/VandE_clustering.output.csv",
file.total1="/data/clusters_association_paper/setA1_set1/setA1/VandE/Results/setA1/permutation/total.csv",
file.total2="/data/clusters_association_paper/setA1_set1/set1/VandE/Results/set1/permutation/total.csv",
separator1=",", separator2=",",
permutation=100, seed=111, top.ranked=320, gsea="msigdb.all", X=5, L=0.15, pvalue=0.05,
outputFolder="/data/clusters_association_paper/setA1_set1"
)
}